

Regional Business Cycle Synchronization in the Long Run: Evidence from Austria

Svatopluk Kapounek, Peter Huber

Workshop "Economic Policy and European Integration at the National Level" Vilnius University Faculty of Economics and Business Administration 19 December, 2019

MOTIVATION

- Co-movement of time series between countries and regions is a major concern in many areas of economics.
- In particular recent theoretical and empirical contributions to international business cycle theory argue that co-movement
 - may differ across different frequencies (e.g. Rua, 2010)
 - may evlove over time (with very different predictions as to how e.g. Frankel and Rose, 1997 vs Krugmann, 1993 for business cycle frequencies)
- There is ample research on comovement of economic time series across countries but less at the regional level. This encompases:
 - European NUTS 2 level research: focusing on EURO adoption and determinants (Montoya & de Haan 2008, Siedschlag & Tondl, 2011, Bierbaumer-Polly et al. 2016)
 - Research on individual countries mostly focusing on the US (e.g. Park and Hewings, 2012, Chung & Hewings, 2015)
- Yet, the analysis of regional data within countries may be of interest for economists
 - Provide a benchmark of how synchronization actually evolves in a currency union
 - May be a testing ground for alternative theories of factors explaining business cycle correlation

THIS PAPER

- Co-movement of time series between countries and regions is a major concern in many areas of economics.
- In particular recent theoretical and empirical contributions to international business cycle theory argue that co-movement
 - may differ across different frequencies (e.g. Rua, 2010)
 - may evlove over time (with very different predictions as to how e.g. Frankel and Rose, 1997 vs Krugmann, 1993 for business cycle frequencies)
- There is ample research on comovement of economic time series across countries but less at the regional level. This encompases:
 - European NUTS 2 level research: focusing on EURO adoption and determinants (Montoya & de Haan 2008, Siedschlag & Tondl, 2011, Bierbaumer-Polly et al. 2016)
 - Research on individual countries mostly focusing on the US (e.g. Park and Hewings, 2012, Chung & Hewings, 2015)
- Yet, the analysis of regional data within countries may be of interest for economists
 - Provide a benchmark of how synchronization actually evolves in a currency union
 - May be a testing ground for alternative theories of factors explaining business cycle correlation

RESULTS

- Heterogeneity
 - is large for almost all frequencies
 - is mainly related to time invariant region fixed effects for short and long frequencies, but by commen time effects for business cycle frequencies
 - co-movement at low and high frequencies is lower than at business cycle frequencies for regional employment while no such clear result appears in the unemployment
- Trends
 - There is some evidence of an upward trend in co-movement at most frequencies
 - At business cycle frequencies this is mainly due to upward trend in the 1990's
 - There are aslo some signs of a decoupelling of Vienna at business cycle frequencies for employment rates
- Correlates
 - Differences in sectoral employment shares (structural difference) are negatively correlated co-movement at business cycle frequencies and higher
 - Out and in-commuting are mostly positively correlated
 - More distant regions have lower comovement and neighboring regions higher comovement at all frequencies

CONTENT

- Prelude on Austria
- Data
- Method
- Results
- Conclusion

• Massive change in economic structure

• increased labour mobility

• and reduced transport costs

7 🔇 🕥

EMPLOYMENT PRIMARY SECTOR

EMPLOYMENT SECONDARY SECOR

EMPLOYMENT TERTIARY SECTOR

10 \bigcirc

OUT- COMMUTING (ACROSS PROVINCE BORDERS)

HIGHWAYS BY YEAR OF CONSTRUCTION

DATA

- Monthly data on employees (from Jan. 1956 to dec. 2015) and unemployed (Jan 1960 to Dec 2015) for 9 provinces (Bundesländer=NUTS2)
- Taken from data from the ASSD
 - Consistent definitions of variables in all time periods
 - Some changes in definitions over time (depending on social security legislation) these, however, affect all regions alike
- Is the official employment and unemployment statistics rate used for business cycle analysis by most analysts
- merged with data on
 - Commuting
 - Sector employment structure
 - distance between capitals
 - neighborhood

EMPLOYMENT RATES

METHOD

- For both series: Employement rate, Unemployment rate
- Preferred method: Cross-Spectrum Analysis
 - coherence = correlation
 - phase shift = lead lag structure:
- Advantage
 - Provides estimates at (arbitrary) specific frequencies for all time periods
 - Can be estimated at each observation

• To check for robustness: 6 year rolling window correlation based on Baxter-King filtered series

TERMINOLOGY

Frequencies

1-5 months => noise

6-8 months => short seasonality

9-16 months => long seasonality

17-36 months => high BC frequencies (BC short)

37-96 months => low BC frequencies (BC ong)

97-132 months => Juglar cycles,

133-256 months => Long Cycles

Periods

1955-1970 -> Post war

1971-1990 -> Austro-Keynesianism (Austrian employment miracle)

1990-2015 -> intensified Globalisation

- Heterogeneity
- Trend
 - H1: regions became structurally more similar and transport costs seem to have reduced: Co-movement should increase.
- Correlates
 - H2: greater sector difference in employment should reduce co-movement
 - H3: more labour market flows should increase co-movement
 - H4. distance between two regions should be negatively correlated to comovement and neighbours should have higher co-movement
 - H4½ better transport-infrastructure should increase co-movement

Heterogeniety

Questions

- Q1: at which frequencies is co-movement highest?
- Q2: Did heterogeneity across pairs change?
- Q3: How much of the variance to region, and time fixed effects explain

Coherence unemployment rate at long business cycle frequency

Average co-movement over pairs (by frequeny over time, unemployment)

Average co-movement over pairs (by frequency over time, employment)

Variance across pairs (sigma-convergence): Unemployment Rate

Variance across pairs (sigma-convergence): Employment Rate

Sources of Variance (ANOVA Results)

Unemployment

Trends

Questions

- Q1: Is there a general tendency for coherence to increase
- Q2: does this apply to all region pairs to the same extent?
- Are there differences across periods

Panel Trend Regression (control for region fixed effects)

Frequency	Noise	Seasonal short	Seasonal short	BC short	BC short	Juglar Cycles	Long Cycles		
	(1-5 Months)	(8-6 Months)	(9-16 Months)	(17-36 Months)	(37-96 Months)	(97-132 Months)	(133-256 Months)		
	Unemployment								
Trend	0.00022	0.00043	-0.00002	0.00042	0.00027	0.00014	0.00014		
	(43.15)	(73.31)	(13.32)	(59.79)	(88.09)	(51.07)	(54.89)		
Ν	23760	23760	23760	23760	23760	23760	23760		
R-sq	0.073	0.185	0.007	0.131	0.246	0.099	0.113		
	Employment								
Trend	-0.00003	-0.00008	-0.00012	0.00013	0.00004	-0.00014	-0.00003		
	(7.00)	(15.19)	(38.79)	(17.72)	(6.50)	(41.84)	(10.41)		
N	25920	25920	25920	25920	25920	25920	25920		
R-sq	0.002	0.009	0.055	0.012	0.002	0.063	0.004		

Trends by region (unemployment)

Trends by region (employment)

Regression coefficients of trend by time period (unemployment)

Regression coefficients of trend by time period (unemployment)

- Explanatory variables
 - Employment structure
 - Difference in primary sector employment share
 - Difference in secondary sector employment share
 - Difference in tertiary sector employment share
 - Average Difference in sector employment shares $(\frac{1}{2}\sum_{k} |s_{ik} s_{jk}|)$
 - Labour flows
 - In-commuting share (annual from 1996, prior decennial 1961, 71 81, 91)
 - Out-communing share (annual from 1996, prior decennial 1961, 71 81, 91)
 - Time invariant
 - In(shortest road distance between capitals)
 - Neighbours

Regression Results 1

Frequency	Noise	Seasonal short	Seasonal long	BC short	BC short	Juglar Cycles	Long Cycles
	(1-5 Months)	(8-6 Months)	(9-16 Months)	(17-36 Months)	(37-96 Months)	(97-132 Months)	(133-256 Months)
				Unemploym	ient		
Structural Difference	0.909	-0.747	0.060	-1.011	-1.521	-0.753	-1.097
	(11.910)	(8.560)	(3.170)	(13.850)	(43.180)	(19.370)	(26.520)
In-Commuting share	-0.565	0.829	0.092	1.471	0.446	-0.578	0.522
	(7.980)	(10.260)	(5.250)	(21.730)	(13.660)	(16.040)	(13.600)
Out-commuting Share	0.412	0.413	0.115	0.665	0.012	0.062	-0.298
	(7.530)	(6.600)	(8.470)	(12.690)	(0.490)	(2.240)	(10.030)
Time fixed effects	Y	Y	Y	Y	Y	Y	Y
Pair fixed effects	Y	Y	Y	Y	Y	Y	Y
N	21600	21600	21600	21600	21600	21600	21600
IN D	21600	21600	21600	21600	21600	21600	21600
K-sq	0.215	0.277	0.410	0.071	0.524	0.207	0.230
				Employme	nt		
Structural Difference	1.055	-0.542	0.865	-1.726	-2.701	-0.338	-1.980
	(14.250)	(7.140)	(18.690)	(20.050)	(33.440)	(7.130)	(41.480)
In-Commuting share	-0.457	0.847	-0.169	-0.160	1.062	0.856	0.960
	(6.650)	(12.020)	(3.940)	(2.000)	(14.170)	(19.480)	(21.670)
Out-commuting Share	0.088	-0.123	-0.093	0.605	1.674	0.108	0.570
_	(1.660)	(2.260)	(2.790)	(9.800)	(28.900)	(3.180)	(16.650)
Time fixed effects	Y	Y	Y	Y	Y	Y	Y
Pair fixed effects	Y	Y	Y	Y	Y	Y	Y
N	21600	21600	21600	21600	21600	21.000	21600
IN D	21600	21600	21600	21600	21600	21600	21000
K-sq	0.186	0.126	0.467	0.578	0.378	0.260	0.125

Regression results 2

 Noise
 Seasonal short
 Seasonal long
 BC short
 BC short
 Juglar Cycles
 Long Cycles

 (1-5 Months)
 (8-6 Months)
 (9-16 Months)
 (17-36 Months)
 (37-96 Months)
 (97-132 Months)
 (133-256 Months)

				Unemploym	ent		
Secondary Sector Difference	0.285	0.668	-0.128	-0.408	-0.368	-0.152	0.478
	(12.850)	(18.380)	(22.150)	(19.330)	(30.090)	(8.860)	(17.340)
Tertiary Sector difference	1.398	6.539	-0.775	-2.861	-4.950	-3.912	2.557
	(8.060)	(24.080)	(17.740)	(18.110)	(51.180)	(21.300)	(12.830)
In-Commuting share	-0.785	0.535	-0.092	0.844	0.502	-0.314	0.013
	(15.730)	(9.750)	(10.270)	(20.890)	(24.850)	(11.890)	(0.460)
Out-commuting Share	-0.362	0.189	0.011	0.597	0.233	-0.490	-1.179
	(9.740)	(4.120)	(1.360)	(19.240)	(11.730)	(11.330)	(31.890)
Neighbor	0.125	0.237	0.006	0.013	0.017	0.059	0.084
	(45.710)	(49.590)	(10.510)	(5.200)	(14.210)	(28.080)	(27.950)
In(Distance)	-0.055	-0.045	-0.012	-0.042	-0.009	-0.001	-0.144
	(24.760)	(12.490)	(18.250)	(20.540)	(8.140)	(0.630)	(53.810)
Time fixed effects	Y	Y	Y	Y	Y	Y	Y
Pair fixed effects	Ν	Ν	Ν	Ν	Ν	Ν	Ν
N	21600	21600	21600	21600	21600	21600	21600
R-sq	0.296	0.278	0.402	0.637	0.487	0.194	0.339
				Employmen	nt		
Secondary Sector Difference	0.133	0.895	-0.115	-0.946	-1.237	-1.291	-0.934
-	(5.850)	(25.150)	(8.830)	(37.350)	(39.610)	(46.170)	(34.070)
Tertiary Sector difference	0.509	7.757	-1.316	-3.533	-4.360	-6.415	-7.897
	(2.930)	(28.170)	(15.530)	(18.580)	(16.790)	(27.660)	(43.380)
In-Commuting share	-0.737	0.397	-0.317	-1.289	-0.986	-1.418	-0.650
	(16.960)	(6.630)	(15.300)	(31.130)	(17.020)	(26.170)	(13.260)
Out-commuting Share	0.045	-0.498	0.142	0.376	0.413	-1.082	-0.234
	(1.210)	(9.280)	(9.200)	(8.300)	(10.790)	(23.870)	(4.050)
Neighbor	0.097	0.246	0.005	0.042	0.071	0.088	0.060
	(30.170)	(49.830)	(2.760)	(13.280)	(22.980)	(34.370)	(20.620)
In(Distance)	-0.108	-0.008	-0.040	-0.052	-0.022	-0.039	-0.006
	(46.390)	(2.060)	(29.700)	(19.500)	(7.780)	(13.940)	(2.030)
Time fixed effects	Y	Y	Y	Y	Y	Y	Y
Pair fixed effects	Ν	Ν	Ν	Ν	Ν	Ν	Ν
N	21600	21600	21600	21600	21600	21600	21600
R-sa	0.285	0.205	0.44	0.525	0 332	0.351	0.227

Summary

- Heterogeneity
 - is large for almost all frequencies
 - is mainly related to time invariant region fixed effects for short and long frequencies, but by commen time effects for business cycle frequencies
 - co-movement at low and high frequencies is lower than at business cycle frequencies for regional employment while no such clear result appears in the unemployment
- Trends
 - There is some evidence of an upward trend in co-movement at most frequencies
 - At business cycle frequencies this is mainly due to upward trend in the 1990's
 - There are aslo some signs of a decoupelling of Vienna at business cycle frequencies for employment rates
- Correlates
 - Differences in sectoral employment shares (structural difference) are negatively correlated comovement at business cycle frequencies and higher
 - Out and in-commuting are mostly positively correlated
 - More distant regions have lower comovement and neighboring regions higher comovement at all frequencies

Thank You for Your Attention